Optimization-based design of surface textures for thin-film Si solar cells Citation

نویسندگان

  • Sheng
  • Xing
  • Steven G. Johnson
  • Jurgen Michel
  • Lionel C. Kimerling
  • Xing Sheng
چکیده

We numerically investigate the light-absorption behavior of thinfilm silicon for normal-incident light, using surface textures to enhance absorption. We consider a variety of texture designs, such as simple periodic gratings and commercial random textures, and examine arbitrary irregular periodic textures designed by multi-parameter optimization. Deep and high-index-contrast textures exhibit strong anisotropic scattering that is outside the regime of validity of the Lambertian models commonly used to describe texture-induced absorption enhancement for normal incidence. Over a 900–1100 nm wavelength range, our optimized surface texture in two dimensions (2D) enhances absorption by a factor of 2.7πn, considerably larger than the original πn Lambertian result and exceeding by almost 50% a recent generalization of Lambertian model for periodic structures in finite spectral range. However, the πn Lambertian limit still applies for isotropic incident light, and our structure obeys this limit when averaged over all the angles. Therefore, our design can be thought of optimizing the angle/enhancement tradeoff for periodic textures. ©2011 Optical Society of America OCIS codes: (040.5350) Photovoltaic. References and links 1. R. Brendel, Thin-Film Crystalline Silicon Solar Cells: Physics and Technology (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003). 2. J. Poortmans and V. Arkhipov, Thin Film Solar Cells: Fabrication, Characterization and Applications (John Wiley & Sons, Ltd, 2006). 3. P. Sheng, A. N. Bloch, and R. S. Stepleman, ―Wavelength-selective absorption enhancement in thin-film solar cells,‖ Appl. Phys. Lett. 43(6), 579–581 (1983), http://link.aip.org/link/doi/10.1063/1.94432. 4. C. Heine and R. H. Morf, ―Submicrometer gratings for solar energy applications,‖ Appl. Opt. 34(14), 2476–2482 (1995), http://www.opticsinfobase.org/abstract.cfm?URI=ao-34-14-2476. 5. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, ―Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,‖ Appl. Phys. Lett. 89(11), 111111 (2006), http://link.aip.org/link/doi/10.1063/1.2349845. 6. N. N. Feng, J. Michel, L. Zeng, J. Liu, C. Y. Hong, L. C. Kimerling, and X. Duan, ―Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,‖ IEEE Trans. Electron Devices 54, 1926– 1933 (2007), http://dx.doi.org/10.1109/TED.2007.900976. 7. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, ―Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,‖ Opt. Express 15(25), 16986–17000 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-25-16986. 8. C. Haase and H. Stiebig, ―Thin-film silicon solar cells with efficient periodic light trapping texture,‖ Appl. Phys. Lett. 91(6), 061116–061119 (2007), http://link.aip.org/link/doi/10.1063/1.2768882. 9. J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, ―Thin film solar cell design based on photonic crystal and diffractive grating structures,‖ Opt. Express 16(19), 15238–15248 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-19-15238. 10. P. G. O’Brien, N. P. Kherani, A. Chutinan, G. A. Ozin, S. John, and S. Zukotynski, ―Silicon Photovoltaics Using Conducting Photonic Crystal Back-Reflectors,‖ Adv. Mater. (Deerfield Beach Fla.) 20(8), 1577–1582 (2008), http://dx.doi.org/10.1002/adma.200702219. 11. L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. D. Joannopoulos, and L. C. Kimerling, ―Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,‖ Appl. Phys. Lett. 93(22), 221105 (2008), http://link.aip.org/link/doi/10.1063/1.3039787. #147517 $15.00 USD Received 13 May 2011; revised 6 Jun 2011; accepted 8 Jun 2011; published 16 Jun 2011 (C) 2011 OSA 4 July 2011 / Vol. 19, No. S4 / OPTICS EXPRESS A841 12. R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, ―Light trapping in thin-film silicon solar cells with submicron surface texture,‖ Opt. Express 17(25), 23058–23065 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-25-23058. 13. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, ―Nanodome solar cells with efficient light management and selfcleaning,‖ Nano Lett. 10(6), 1979–1984 (2010), http://dx.doi.org/10.1021/nl9034237. 14. S. B. Mallick, M. Agrawal, and P. Peumans, ―Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,‖ Opt. Express 18(6), 5691–5706 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe18-6-5691. 15. S. E. Han and G. Chen, ―Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,‖ Nano Lett. 10(11), 4692–4696 (2010), http://dx.doi.org/10.1021/nl1029804. 16. X. Sheng, J. Liu, N. Coronel, A. M. Agarwal, J. Michel, and L. C. Kimerling, ―Integration of Self-Assembled Porous Alumina and Distributed Bragg Reflector for Light Trapping in Si Photovoltaic Devices,‖ IEEE Photon. Tech. Lett. 22, 1394–1396 (2010), http://dx.doi.org/10.1109/LPT.2010.2060717. 17. A. Naqavi, K. Soderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, ―Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,‖ Opt. Express 19(1), 128–140 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-1-128. 18. X. Sheng, J. Liu, I. Kozinsky, A. M. Agarwal, J. Michel, and L. C. Kimerling, ―Design and non-lithographic fabrication of light trapping structures for thin film silicon solar cells,‖ Adv. Mater. (Deerfield Beach Fla.) 23(7), 843–847 (2011), http://dx.doi.org/10.1002/adma.201003217. 19. C. Lin and M. L. Povinelli, ―Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,‖ Opt. Express 17(22), 19371–19381 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-19371. 20. A. Lin and J. Phillips, ―Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,‖ Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008), http://dx.doi.org/10.1016/j.solmat.2008.07.021. 21. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, ―Improved redresponse in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,‖ Appl. Phys. Lett. 95(18), 183503 (2009), http://link.aip.org/link/doi/10.1063/1.3256187. 22. O. Isabella, F. Moll, J. Krc, and M. Zeman, ―Modulated surface textures using zinc-oxide films for solar cells applications,‖ Phys. Status Solidi A 207, 642–646 (2010), http://dx.doi.org/10.1002/pssa.200982828. 23. Z. Yu, A. Raman, and S. Fan, ―Fundamental limit of nanophotonic light trapping in solar cells,‖ Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010), http://dx.doi.org/10.1073/pnas.1008296107. 24. Z. Yu, A. Raman, and S. Fan, ―Fundamental limit of light trapping in grating structures,‖ Opt. Express 18(S3 Suppl 3), A366–A380 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-S3-A366. 25. C. Lin and M. L. Povinelli, ―The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays,‖ Appl. Phys. Lett. 97(7), 071110 (2010), http://link.aip.org/link/doi/10.1063/1.3475484. 26. E. Yablonovitch, ―Statistical ray optics,‖ J. Opt. Soc. Am. 72(7), 899–907 (1982), http://www.opticsinfobase.org/abstract.cfm?URI=josa-72-7-899. 27. K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayasahi, K. Adachi, and H. Nishimura, ―Highly textured SnO2:F TCO films for a-Si solar cells,‖ Rep. Res. Lab. Asahi Glass Co. Ltd. 42, 129–137 (1992). 28. H. R. Stuart and D. G. Hall, ―Thermodynamic limit to light trapping in thin planar structures,‖ J. Opt. Soc. Am. A 14(11), 3001–3008 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-14-11-3001. 29. Z. Yu and S. Fan, ―Angular constraint on light-trapping absorption enhancement in solar cells,‖ Appl. Phys. Lett. 98(1), 011106 (2011), http://link.aip.org/link/doi/10.1063/1.3532099. 30. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008). 31. J. M. Gee, ―Optically enhanced absorption in thin silicon layers using photonic crystals,‖ in Proceedings of 29th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New Orleans, LA, 2002), pp. 150–153, http://dx.doi.org/10.1109/PVSC.2002.1190478. 32. J. Wang, J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, ―Cavity-enhanced multispectral photodetector using phase-tuned propagation: theory and design,‖ Opt. Lett. 35(5), 742–744 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-5-742. 33. M. Ghebrebrhan, P. Bermel, Y. Avniel, J. D. Joannopoulos, and S. G. Johnson, ―Global optimization of silicon photovoltaic cell front coatings,‖ Opt. Express 17(9), 7505–7518 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-9-7505. 34. P. Campbell and M. Green, ―The limiting efficiency of silicon solar cells under concentrated sunlight,‖ IEEE Trans. Electron Devices 33, 234–239 (1986), http://dx.doi.org/10.1109/T-ED.1986.22472. 35. A. Taflove and S. C. Hagness, Computational Electrodynamics, 2nd ed. (Artech House, Norwood, MA, 2000). 36. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, ―MEEP: A free-software package for electromagnetic simulations by the FDTD method,‖ Comp. Phys. Comm. 181, 687– 702 (2010), http://dx.doi.org/10.1016/j.cpc.2009.11.008. 37. S. G. Johnson, The NLopt nonlinear-optimization package, http://ab-initio.mit.edu/nlopt. 38. M. J. D. Powell, ―Direct search algorithms for optimization calculations,‖ Acta. Numerica 7, 287–336 (1998), http://dx.doi.org/10.1017/S0962492900002841. 39. T. P. Runarsson and X. Yao, ―Search biases in constrained evolutionary optimization,‖ IEEE Trans. Syst. Man Cybern. C: Appl. Rev. 35, 233–243 (2005), http://dx.doi.org/10.1109/TSMCC.2004.841906. 40. W. C. Chew, J. M. Jin, E. Michielssen, and J. Song, eds., Fast and Efficient Algorithms in Computational Electromagnetics (Artech House, Norwood, MA, 2001). #147517 $15.00 USD Received 13 May 2011; revised 6 Jun 2011; accepted 8 Jun 2011; published 16 Jun 2011 (C) 2011 OSA 4 July 2011 / Vol. 19, No. S4 / OPTICS EXPRESS A842 41. G. Strang, Computational Science and Engineering (Wellesley-Cambridge Press, Wellesley, MA, 2007). 42. D. C. Dobson and S. J. Cox, ―Maximizing Band Gaps in Two-Dimensional Photonic Crystals,‖ SIAM J. Appl. Math. 59(6), 2108–2120 (1999), http://dx.doi.org/10.1137/S0036139998338455. 43. P. Borel, A. Harpøth, L. Frandsen, M. Kristensen, P. Shi, J. Jensen, and O. Sigmund, ―Topology optimization and fabrication of photonic crystal structures,‖ Opt. Express 12(9), 1996–2001 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-9-1996. 44. C. Y. Kao, S. Osher, and E. Yablonovitch, ―Maximizing band gaps in two-dimensional photonic crystals by using level set methods,‖ Appl. Phys. B 81(2-3), 235–244 (2005), http://dx.doi.org/10.1007/s00340-005-1877-3. 45. W. R. Frei, D. A. Tortorelli, and H. T. Johnson, ―Topology optimization of a photonic crystal waveguide termination to maximize directional emission,‖ Appl. Phys. Lett. 86(11), 111114 (2005), http://link.aip.org/link/doi/10.1063/1.1885170. 46. Y. Tsuji and K. Hirayama, ―Design of Optical Circuit Devices Using Topology Optimization Method With Function-Expansion-Based Refractive Index Distribution,‖ IEEE Phot. Tech. Lett. 20, 982–984 (2008), http://dx.doi.org/10.1109/LPT.2008.922921.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Annealing Process for Totally Printable High-current Superstrate CuInS2 Thin-Film Solar Cells

Planar superstrate CuInS2 (CIS) solar cell devices are fabricated using totally solution-processed deposition methods. A titanium dioxide blocking layer and an In2S3 buffer layer are deposited by the spray pyrolysis method. A CIS2 absorber layer is deposited by the spin coating method using CIS ink prepared by a 1-butylamine solvent-based solution at room temperature. To obtain optimum annealin...

متن کامل

Design of Silicon Nano-Bars Anti-Reflection Coating to Enhance Thin Film Solar Cells Efficiency

In this paper a novel anti-reflection (AR) coating based on silicon nano-bars is designed and its impact on the performance of crystalline silicon (c-Si) thin-film solar cells is extensively studied. Silicon nano-bars with optimized size and period are embedded on top of the active layer, under a 100nm Si3N4 layer. As a result of the proposed layer stack, an inhomogeneous intermediate layer wit...

متن کامل

Improving the optical properties of thin film plasmonic solar cells of InP absorber layer using nanowires

In this paper, a thin-film InP-based solar cell designed and simulated. The proposed InP solar cell has a periodic array of plasmonic back-reflector, which consists of a silver layer and two silver nanowires. The indium tin oxide (ITO) layer also utilized as an anti-reflection coating (ARC) layer on top. The design creates a light-trapping structure by using a plasmonic back-reflector and an an...

متن کامل

Investigation of Physical Properties of e-Beam Evaporated CdTe Thin Films for Photovoltaic Application

CdTe thin films with 2.8 µm thickness were deposited by electron beam evaporation method. X-ray diffraction, scanning electron microscopy, UV-Vis-NIR spectroscopy and atomic force microscopy (AFM) were used to characterize the films. The results of AFM analysis revealed that the CdTe films have uniform surface. CdTe thin films were heat-treated by SnCl2 solution. Structural analysis using XRD s...

متن کامل

Analyzing periodic and random textured silicon thin film solar cells by Rigorous Coupled Wave Analysis

A simple and fast method was developed to determine the quantum efficiency and short circuit current of thin-film silicon solar cells prepared on periodically or randomly textured surfaces. The optics was studied for microcrystalline thin-film silicon solar cells with integrated periodic and random surface textures. Rigorous Coupled Wave Analysis (RCWA) was used to investigate the behaviour of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011